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ABSTRACT

We propose a new data model for graph-cut image segmenta-
tion, defined according to probabilities learned by a classifi-
cation process. Unlike traditional graph-cut methods, the data
model takes into account not only color but also texture and
shape information. For melanoma images, we also introduce
skin chromophore features and automatically derive “seed”
pixels used to train the classifier from a coarse initial segmen-
tation. On natural images, our method successfully segments
objects having similar color but different texture. Its applica-
tion to melanoma delineation compares favorably to manual
delineation and related graph-cut segmentation methods.

Index Terms— image segmentation, melanoma, texture,
shape, graph cut

1. INTRODUCTION

Melanoma is a malignant tumor of melanocytes. Although
less common than basal and squamous cell cancers, it is the
most fatal skin cancer which causes a considerable number
of deaths [1]. Since treatment for metastatic melanoma is
difficult, early diagnosis and prompt excision are critical to
increase patient survival rate. Several diagnosis systems for
melanoma have been defined [2], such as the ABCDE system
which uses a checklist of five parameters: asymmetry, bor-
der, color, dimension and evolution, and the 7-points checklist
which is a scoring approach of different features comprising
color, shape and texture. Improvements in diagnostic sensitiv-
ity and specificity have been reported with the introduction of
dermoscopy [3]. However, the interpretation of dermoscopic
images is time-consuming, subjective, and lacks accuracy and
reproducibility. Therefore, there is great interest in develop-
ing computer-aided diagnosis systems for melanoma.

Automatic dermoscopic image analysis typically includes
four stages: 1) image acquisition, 2) image segmentation, 3)
feature extraction and selection and 4) lesion classification.
The segmentation stage, which delineates the borders of pig-
mented skin lesions (PSL), is of great importance since sev-
eral important features, such as lesion dimension, shape, bor-
der irregularity, asymmetry etc. which provide important in-
formation for accurate diagnosis, are calculated on the delin-

eated lesion border [4]. However, automatic accurate PSL
delineation is a challenging task due low contrast between the
lesion and surrounding skin, variegated pigmentation inside
the lesion, fuzzy and irregular lesion boundaries and the pres-
ence of artifacts like hair, skin flakes and specular reflection.

Several methods have been developed for automatic or
semi-automatic PSL delineation on melanoma images which
mostly rely on color as being the most important information.
Many systems select a simple scalar feature such as the in-
tensity [5], or the B and b channel values of RGB and CIE
L*a*b* color spaces [6] which better discriminate in most
dermoscopic images. Others use the CIE L*u*v* color model
as a feature space [7], or its principal components [8] and lu-
minance [9] information.

Classical segmentation techniques have been applied to
extract the PSL, such as global or adaptive thresholding [10],
k-means or fuzzy c-means clustering [11], active contours
[12], region split and merge [13], morphological operators
[14] and edge detection techniques [9]. Thresholding meth-
ods perform well when the contrast between the lesion and
the skin is good, but fail when the lighting conditions are in-
homogeneous. Edge-based methods perform poorly when the
image is blurry and when the transition between skin and le-
sion is smooth. Region-based methods have difficulties when
the lesion is textured or inhomogeneous. Moreover, most of
these segmentation methods require user interaction and, as
mentioned above, many rely on simple photometric features,
although shape and texture are clearly important features for
this task. When texture is used, parameters are often learned
from a small database, and are not easily adapted to a specific
image, for example when lighting conditions are inhomoge-
neous or different to the training set.

We devise an automatic graph-cut segmentation frame-
work with a new data term which takes into account color,
texture and shape features learned from the image. For
melanoma images in particular, we also use skin chro-
mophores hemoglobin and melanin as additional features
extracted from the image. To avoid user-interaction, we de-
rive “seed” pixels from a coarse initial segmentation of the
PSL, obtained by clustering and morphological operators.
Seed pixels are used by a classifier to derive likelihood prob-
abilities for the final graph-cut delineation of the PSL.
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2. AUTOMATIC PIGMENTED SKIN LESION
DELINEATION

Graph-cut techniques are among the most powerful methods
that extract foreground from background. Initially proposed
by [15], graph-cut is an interactive object segmentation ap-
proach based on the optimization of a discrete energy func-
tion defined on a binary label set L = {0, 1} via computing a
minimum cut on the image graph. The key task is the proper
definition of this energy in order to capture the properties of
object regions and those of boundaries between them. This is
usually done in the context of maximum a posteriori estima-
tion according to likelihood and prior joint-label distributions
so that the minimum of the energy l̂ corresponds to the best
segmentation among possible labelings F .

Let G = 〈V, E〉 be the image graph, where each node
(pixel) p is assigned a label lp ∈ L. Np is the set of 8-
connected neighbors of p. The labeling solution is given by:

l̂ = argmin
l∈F

∑
p∈V

Dp(lp) + t
∑
p∈V

∑
q∈Np

Up,q · δlp 6=lq

 . (1)

The data term in the fist sum is usually defined by:

Dp(lp) = − ln Pr(xp|lp) ≈ − lnh(xp; lp) (2)

where xp is the observation x at pixel p, often the inten-
sity value. Likelihood probabilities Pr(xp|lp), which are
assumed to be mutually independent, are usually estimated
from user-labeled pixels, “seeds”, by two normalized his-
tograms h(xp; lp ∈ {0, 1}), one for the foreground and
another for the background. The term δlp 6=lq in the second
sum is the Potts prior which encourages piecewise-constant
labeling. The multiplicative term Up,q is given by:

Up,q ∝ exp

(
− (xp − xq)

2

2σ2

)
· 1

dist(p, q)
,

where σ is a parameter adjusting the sensitivity to intensity
difference between neighboring pixels p and q, and dist(p, q)
denotes the Euclidean distance between these neighbors.

Traditional graph-cut segmentation has several advan-
tages [16]: globally optimal labeling for |L| = 2, practical
efficiency, numerical robustness, ability to integrate multiple
visual cues and constraints and unrestricted topological prop-
erties of regions. Its main drawback is the requirement of user
interaction in order define initial seeds [17], often as hard con-
strains, meaning that seed pixels cannot change their labels
later. For melanoma segmentation, the main task is to define
the data term (2) in order to take texture and shape features
into account, in addition to color. As lighting conditions can
change, the model must be adapted to the image to segment,
therefore histograms or Gaussian Mixtures cannot be used.

Our method is summarized in Fig. 1. We suppress the
user interaction requirement by deriving seed pixels automati-
cally from an initial coarse segmentation furthermore defining

Fig. 1. Flowchart of the proposed automatic pigmented skin
lesion segmentation method.

them as soft constraints, so that their labels can change during
optimization. Seeds constitute the training set of a supervised
classifier, such as the Support Vector Machine (SVM) or the
Random Forest (RF), which proceeds on feature vectors of
color, shape, texture and chromophores. We define the data
term according to the probabilities learned by the classifier.

2.1. Auto-seeding

Seed pixels, which are used to train the classifier as well as
to initialize graph-cut segmentation, must be representative of
the feature distribution. This means that we need a large num-
ber of such pixels but must ensure that they belong either to
the lesion or the background skin. Pixels near the lesion-skin
boundary on either side must be excluded. Hence we define
seeds as the central part of an initial coarse segmentation.

First, a preprocessing step suppresses hair using a multi-
scale method [18]. The eigenvalues λσ,1, λσ,2 of the Hessian
matrix are computed for each pixel of the image convoluted
with a Gaussian kernel at a given scale σ. The function

ν(x, y, σ) = exp(−λσ,1/λσ,2

β1
)(1− exp(−

√
λ2
σ,1 + λ2

σ,2

β2
))

is maximum at the center of a hair x, y at a scale σ equal to
its width. Here β1 and β2 are weighting factors. Detection is
done with to the following rule:

hair(x, y) = 1, ν(x, y, σ) > mean
x,y

{
max
σ

{ν(x, y, σ)}
}

and hair width at x, y is set to σ.
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The second step is an unsupervised binary clustering of
the image minus detected hairs. We use k-means++ clustering
[19] due to its greater robustness to initial values compared to
the classical k-means algorithm. This produces a coarse seg-
mentation which roughly locates the lesion area along with
some small outliers. Sometimes hairs can split some regions
in 2 or more parts. Therefore, we apply a morphological clos-
ing of a size equal to that of the hair to ensure that the lesions
are represented by regions larger than a given area threshold.

Since we want that seed pixels are strictly inside the le-
sion near its center, we skeletonize the closed coarse segmen-
tation. The skeleton is then pruned by the contour partitioning
method in [20], which suppress small branches without dis-
placing the skeleton. A subsequent dilation ensures that the
distribution of the seeds includes most of the candidate pixels,
from definite inner lesion to possible peripheral lesion pixels.

For background skin seeds, we proceed in a simple man-
ner observing that most skin lesions fall approximately in the
center of the dermoscope during acquisition. We define a
frame of a given thickness around the image and use pixels
inside it as background skin seeds. In the case of large lesions
that go beyond the border of the image, we discard frame pix-
els that overlap with the coarse segmentation of the lesion.

2.2. New data model

We replace the classical graph-cut data term derived from
seed histograms by a probability delivered by a robust clas-
sifier trained on automatically detected seeds. The classifier
determines the probability for a feature vector vp associated
with pixel p to be labelled as lesion or background. The vec-
tor vp includes information on color, texture, shape and chro-
mophores rather than scalar intensity only. For each pixel, we
start with a feature vector containing its R, G and B values.

2.2.1. Texture

Texture information is concatenated to the feature vector of
each pixel as a local binary pattern (LBP) [21]. For N (usu-
ally 8) points on the circumference of a circle of radius R
(usually 1) centered at the pixel p, the LBP is given by:

LBPN,R =

N−1∑
n=0

s(Ln − Lp)2
n,

where Lp, Ln denote the luminance values of the pixel p and
the point n respectively, and s(·) is a sign function returning
1 if its argument is positive and 0 otherwise.

2.2.2. Shape

If the local texture is well represented by the LBP, shape can
be represented by a local color template. Therefore, we con-
catenate the R, G, B values of pixels in a neighborhood of size
M×M around each pixel p to its feature vector vp. Different
shapes of lesion border can be captured by this template.

2.2.3. Chromophores

Melanocytes are cells that produce a dark chromophore,
melanin, which is responsible for the skin color. Melanocytes
suffering melanoma exhibit a high concentration of melanin.
As the metabolism of these cells increases, the quantity of
hemoglobin also increases. We quantify and extract melanin
and hemoglobin from RGB images using a Beer-Lambert law
based model fitting technique [22]. These two chromophore
values are also concatenated to the feature vector.

2.2.4. Classification and new energy model

We feed feature vectors constructed for each automatic seed
pixel to a classifier, and use its output to derive the likelihood
probability defining the data term of graph-cut energy (2).
The likelihood gives the probability for a pixel to be lesion or
background. Both SVM and RF are robust and efficient clas-
sifiers. RF is overfit-free, resistant to outliers and its output
is a probability. The decision function of SVM f(v) can be
transformed to a probability by fitting a sigmoid model [23]:

PA,B [f(v)] ≡
1

1 + exp[Af(v) +B]

where A, B are constants minimizing the cross entropy error.
The labeling solution (1) thus becomes:

l̂ = argmin
l∈F

∑
p∈V

− lnPA,B [f(v)]

+ t
∑
p∈V

∑
q∈Np

1

||vp − vq||2 + 1
·

δlp 6=lq

dist(p, q)

 .

(3)

where || · ||2 denotes the L2 norm.
We note that we use seed pixels as “soft” labeling con-

straints as Dp(lp) = − lnPA,B [f(v)]. In classical graph-cut
segmentation [15], seeds are used as “hard” constraints for
pixels that cannot change their initial label, since Dp(lp) is
defined by a large constant when p is a seed.

3. EXPERIMENTAL RESULTS

3.1. Natural images

We first compare our method on natural images with three
graph-cut segmentation methods: the classical method
(BJ) [15], the Lazy Snapping algorithm (LS) [24] and the
Grab-Cut algorithm (GBC) [25]. Both qualitative (Fig. 2) and
quantitative (Table 1) evaluations confirm the importance of
shape and texture features. Using these features, our method
is able to differentiate an object from the background even if
their intensity distributions are very similar, such as the build-
ing and the cross in Fig. 2. In quantitative evaluation, we use
the same seeds for every method, except for GBC. We can
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(a) (b) (c) (d) (e) (f)

Fig. 2. Qualitative comparison on a synthetic texture (top)
and a natural image (bottom). (a) Initial image with seeds, (b)
ground-truth, (c) BJ, (d) LS, (e) GBC, (f) our approach.

BJ LS GBC Our
Texture 27.46 11.65 19.46 3.81
Leopard 37.22 55.95 47.16 11.84
Grave 20.63 10.89 5.15 7.61
Cross 75.81 18.43 57.82 3.99

Swimmer 16.25 8.02 165.20 13.10
Plane 15.59 19.00 38.10 6.78

Japanese 6.33 5.29 3.58 1.52
Sheep 55.23 70.97 51.43 20.66
Birds 19.05 18.64 25.50 10.82
Boat 18.60 17.17 10.58 9.64

Table 1. Segmentation error on natural color images from the
Berkeley [26] and the MSRC [27] segmentation datasets.

see that the error rate, reported as the percentage of wrongly
segmented pixels, is lower for our approach.

3.2. Melanoma images

We next evaluate our method on real dermoscopic images.
Fig. 3 illustrates automatically defined seeds on several im-
ages from the EDRA dataset [28]. Lesion seeds are in red, and
background seeds in blue. Results of qualitative and quantita-
tive comparison with other graph-cut methods on this dataset
are given in Fig. 4 and Table 2 respectively. Quantitative mea-
sures used are the Dice coefficient, the recall and the preci-
sion values all reported on 100 dermoscopic images. We can
see that our method outperforms other graph-cut methods in
terms of Dice and is comparable to others on other measures.

4. CONCLUSIONS

We presented a new data model for graph-cut image segmen-
tation, defined according to probabilities learned by a classi-
fication process, which takes into account not only color but
also texture and shape information. For melanoma segmenta-
tion, we also introduce skin chromophore features and auto-
matically derive “seed” pixels used to train the classifier from

Fig. 3. Automatic seeds on melanoma (top) and on dysplastic
nevi (bottom) images.

Fig. 4. Melanoma delineation. Left to right, top to bottom:
dermoscopic image, ground truth, our method, LS, BJ, GBC.

Dice Precision Recall
mean s.d. mean s.d. mean s.d.

Our 93.85 3.08 98.36 1.68 88.27 7.56
LS 88.73 4.68 98.76 1.53 80.89 7.67
BJ 88.70 5.00 99.07 0.81 80.66 8.14

GBC 87.90 9.90 84.37 16.45 95.53 4.08

Table 2. Quantitative evaluation of melanoma delineation on
100 dermoscopic images from the EDRA dataset.

a coarse initial segmentation. On natural images, our method
successfully segments objects with similar color distributions
but different textures. Its application to melanoma delineation
in particular gives promising results.

We are currently investigating the extension of our method
to multispectral dermoscopic images which, in addition to
RGB, include 4 additional wavelengths of which 2 are in-
frared. The focus is therefore on adapting extracted texture,
shape and chromophore features to the new space.
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